\(x^{2016}=x^{2017}\\ \Leftrightarrow x^{2016}-x^{2017}=0\\ \Leftrightarrow x^{2016}\left(1-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^{2016}=0\\1-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy S = {0;1}
5^x=5^2019:(5^2013-100.5^2010)
=> 5x=52019:(52010.(53-100))
=>5x=52019:(52010.(125-100))
=>5x=52019:(52010.25)
=>5x=52019:52012
=>5x=57
=> x=7