\(x_0=-1\Rightarrow y_0=1-m+3m+1=2-2m\)
\(y'=4x^3-2mx\Rightarrow y'\left(1\right)=4-2m\)
\(\Rightarrow pttt:y=\left(4-2m\right)\left(x+1\right)+2-2m\)
\(A\left(0;2\right)\in pttt\Rightarrow4-2m+2-2m=2\Leftrightarrow m=1\)
\(x_0=-1\Rightarrow y_0=1-m+3m+1=2-2m\)
\(y'=4x^3-2mx\Rightarrow y'\left(1\right)=4-2m\)
\(\Rightarrow pttt:y=\left(4-2m\right)\left(x+1\right)+2-2m\)
\(A\left(0;2\right)\in pttt\Rightarrow4-2m+2-2m=2\Leftrightarrow m=1\)
Tìm tham số m để tiếp tuyến của đồ thị hàm số \(y=\dfrac{mx-1}{x-2}\) tại điểm có hoành độ bằng 1 đi qua điểm A(1;-2) .
Tìm tham số m để tiếp tuyến của đồ thị hàm số \(y=x^3-2x^2+3mx+1\) tại điểm có hoành độ bằng 1 đi qua điểm A(1;3) .
Viết phương trình tiếp tuyến của đồ thị hàm số y = x3 + 2x2 + x - 1 tại điểm M có hoành độ bằng 1
Cho hàm số \(f\left(x\right)=\sqrt{2x^2-4}\) . Viết phương trình tiếp tuyến cảu đồ thị hàm số tại điểm có hoành độ tiếp điểm bằng tung độ tiếp điểm .
Cho hàm số y=f(x) có đạo hàm trên R và thỏa mãn f(1+3x)=2x-f(1-2x) với mọi \(x\in R\) . Lập phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=1 .
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x-1}{x+1}\) đi qua điểm A(-1;4) có phương trình là :
Cho hai điểm M,N thuộc đồ thị của hàm số \(y=x^3-x^2+2\) có hoành độ lần lượt là \(x_M=1,x_N=2\) . Tính hệ số góc của cát tuyến MN .
Tìm m để đường thẳng d : y= m-x cắt đồ thị hàm số (C) : \(y=\dfrac{x-1}{x+1}\) tại hai điểm phân biệt A,B sao cho các tiếp tuyến của (C) tại A và B song song nhau .
Cho hàm số \(y=x^3+x^2-1\) có đồ thị (C), phương trình tiếp tuyến của (C) tại A(1;1) cắt (C) tại điểm B . Tính độ dài đoạn AB.