Tìm tất cả các nghiệm nguyên dương x,y thỏa mãn phương trình: \(5x^2+6xy+2y^2+2x+2y-73=0\)
Tìm tất cả số chính phương để \(M=\dfrac{x\sqrt{x}-8}{x-4\sqrt{x}+4}\) nhận giá trị là số nguyên
1. Tìm tất cả các số tự nhiên \(n\) để phân thức sau tối giản: \(A=\dfrac{2n^2+3n+1}{3n+1}\)
2. Cho các số thực dương x, y, z thỏa mãn \(xy^2z^2+x^2z+y=3z^2\) .Tìm giá trị lớn nhất của biểu thức: \(M=\dfrac{z^4}{1+z^4\left(x^4+y^4\right)}\)
A = \(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4}{x-2\sqrt{x}}\) với x > 0, và x \(\ne\) 4
a) Rút gọn A
b) So sánh A với 1.
c) Tìm tất cả các giá trị nguyên để A nhận giá trị nguyên.
Cho hai biểu thức:
A = \(\dfrac{x-7}{\sqrt{x}}\) và B = \(\dfrac{3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{2-\sqrt{x}}+\dfrac{2x-3\sqrt{x}+6}{x-4}\), với \(x>0,x\ne4\)
Biết B sau khi thu gọn được: B = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
Tìm tất cả các giá trị nguyên của x để biểu thức P = A.B có giá trị nguyên
Bài 8. Cho M = \(\dfrac{\sqrt{x}+5}{\sqrt{x}+1}\) với 𝑥 ≥ 0; 𝑥 ≠ 1. Tìm số thực x để M có giá trị nguyên
Bài 9. Cho P = \(\dfrac{\sqrt{x}+7}{\sqrt{x}+2}\) với x ≥ 0; x ≠ 1. Tìm các số thực x để P có giá trị là số nguyên.
Cho biểu thức:
B=\(\left(\dfrac{1}{3-\sqrt{x}}-\dfrac{1}{3+\sqrt{x}}\right).\dfrac{3+\sqrt{x}}{\sqrt{x}}\)( với x>0;x\(\ne\)9)
Rút gọn biểu thức và tìm tất cả các giá trị nguyên của x để B>\(\dfrac{1}{2}\)
tìm cặp số thực x,y thỏa mãn điều kiện:
\(\sqrt{x-1}\)+\(\sqrt{3-x}=y^2+2\sqrt{2020}y+2022\).
cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{x+2\sqrt{x}}\right):\left(1+\dfrac{1}{\sqrt{x}}\right)\) với x>0
1.rút gọn biểu thức P
2.tìm các số nguyên x thảo mãn P>0