f:\(R^+\rightarrow R^+\) thỏa f(1)=\(\dfrac{1}{2}\) và f(x.y)=\(f\left(x\right)\).\(f\left(\dfrac{3}{y}\right)\) +\(f\left(y\right)\).\(f\left(\dfrac{3}{x}\right)\) \(\forall x,y\in R^+\) .Tìm f
Xét tính chẵn lẻ của các hàm số sau :
\(a\text{/}\) \(y=f\left(x\right)=\frac{2x^4-x^2+3}{x^2-1}\)
\(b\text{/}\) \(y=f\left(x\right)=\frac{\left|2x+1\right|+\left|2x-2\right|}{\left|2x+1\right|-\left|2x-1\right|}\)
xét tính đồng biến nghịch biến của các hàm số trên
\(y=f\left(x\right)=x^2-2x+3\) trên khoảng \(_{\left(1;+\infty\right)}\)
y=f(x)=\(\sqrt{3-x}\) trên khoảng \(\left(-\infty;3\right)\)
Biểu đồ sau (h.3) biểu thị sản lượng vịt, gà và ngan lai qua 5 năm của một trang trại. Coi \(y=f\left(x\right),y=g\left(x\right),y=h\left(x\right)\) tương ứng là các hàm số biểu thị sự phụ thuộc số vịt, số gà và số ngan lại vào thời gian x. Qua biểu đồ, hãy :
a) Tìm tập xác của mỗi hàm số đã nêu ?
b) Tìm các giá trị \(f\left(2002\right);g\left(1999\right);h\left(2000\right)\) và nêu ý nghĩa của chúng ?
c) Tính hiệu \(h\left(2002\right)-h\left(1999\right)\) và nêu ý nghĩa của nó ?
Tìm tập xác định và xét tính chẵn lẻ của hàm số
y=f(x)=\(\dfrac{\left|x+1\right|-\left|x-1\right|}{\left|x+\text{2}\right|+\left|x-\text{2}\right|}\)
Cho các hàm số \(f\left(x\right)=x^2+2+\sqrt{2-x};g\left(x\right)=-2x^3-3x+5\)
\(u\left(x\right)=\left\{{}\begin{matrix}\sqrt{3-x};\left(x< 2\right)\\\sqrt{x^2-4};\left(x\ge2\right)\end{matrix}\right.\)
\(v\left(x\right)=\left\{{}\begin{matrix}\sqrt{6-x};\left(x\le0\right)\\x^2+1;\left(x>0\right)\end{matrix}\right.\)
Tính các giá trị \(f\left(-2\right)-f\left(1\right);f\left(-7\right)-g\left(-7\right);f\left(-1\right)-u\left(-1\right);u\left(3\right)-v\left(3;\right)v\left(0\right)-g\left(0\right);\dfrac{f\left(2\right)-f\left(-2\right)}{v\left(2\right)-v\left(-3\right)}\) ?
Cho hàm số :
\(y=f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2x-3}{x-1};\left(x\le0\right)\\-x^2+2x;\left(x>0\right)\end{matrix}\right.\)
Tính giá trị của hàm số đó tại \(x=5;x=-2;x=0;x=2\) ?
Khảo sát sự biến thiên của
1)y=f(x)=\(\dfrac{1}{1-x}\)trên \(\left(1;+\infty\right)\)
2)y=f(x)=\(\sqrt{x+4}+\sqrt{x+1}\)trên \(\left(4;+\infty\right)\)
3)y=f(x)=\(\left|2x-4\right|+x\) trên \(\left(-\infty;2\right)\)
Cho \(y=f\left(x\right)=\left(m-1\right)x^2+\left(2m+1\right)x+3\). Tìm m để hàm số đồng biến trên \(\left(2;+\infty\right)\).