Để pt có 2 nghiệm:
\(\left\{{}\begin{matrix}m\ne1\\\Delta'=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\1>0\end{matrix}\right.\) \(\Rightarrow m\ne1\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m-2\right)}{m-1}\\x_1x_2=\frac{m-3}{m-1}\end{matrix}\right.\)
\(x_1+x_2+x_1x_2< 1\)
\(\Leftrightarrow\frac{2\left(m-2\right)}{m-1}+\frac{m-3}{m-1}-1< 0\)
\(\Leftrightarrow\frac{2m-6}{m-1}< 0\Rightarrow1< m< 3\)