ĐK: \(x\ge4\)
\(\dfrac{\left(x-2\right)!}{\left(x-4\right)!}+\dfrac{x!}{\left(x-2\right)!.2!}=101\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)+\dfrac{x\left(x-1\right)}{2}=101\)
\(\Leftrightarrow3x^2-11x-190=0\)
\(\Rightarrow x=10\)
ĐK: \(x\ge4\)
\(\dfrac{\left(x-2\right)!}{\left(x-4\right)!}+\dfrac{x!}{\left(x-2\right)!.2!}=101\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)+\dfrac{x\left(x-1\right)}{2}=101\)
\(\Leftrightarrow3x^2-11x-190=0\)
\(\Rightarrow x=10\)
Tìm số tự nhiên x thỏa
\(4C^4_{x-1}-4C^3_{x-1}< 5A^2_{x-2}\)
Tìm số tự nhiên x thỏa
\(C^{x+3}_{8+x}=5A^3_{x+6}\)
Tìm số tự nhiên x thỏa
\(\dfrac{x!\left(4-x\right)!}{4!}\)
Tìm số tự nhiên x thỏa:
\(C_{8+x}^{x+3}=5A^3_{x+6}\)
Tìm số tự nhiên x thỏa:
\(\dfrac{1}{C^x_4}-\dfrac{1}{C^x_5}=\dfrac{1}{C^x_6}\)
Tìm số tự nhiên x thỏa:
\(\dfrac{x!\left(4-x\right)!}{4!}-\dfrac{x!\left(5-x\right)!}{5!}=\dfrac{x!\left(6-x\right)!}{6!}\)
12, tìm hệ số x26trong khai triển : \(\left(1+x^7\right)^n\), x khác 0 biết :
\(C^1_{2n+1}+C^2_{2n+1}+...+C^n_{2n+1}=2^{20}-1\)
tìm hệ số của số hạng chứa x26 trong khai triển nhị thức niuton của :
\(\left(\frac{1}{x^4}+x^7\right)^n\) biết rằng \(C^1_{2n+1}+C^2_{2n+1}+....+C^n_{2n+1}=2^{20}-1\)
HELP!................ ai trả lời nhanh và đúng nhất mình sẽ tích 3 lần