Violympic toán 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
KAPUN KOTEPU

Tìm số tự nhiên x biết rằng :

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\cdot\left(x+1\right)}=\frac{2000}{2002}\)

mỹ phạm
7 tháng 7 2020 lúc 15:22

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)

\(\Rightarrow\) \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)

\(\Rightarrow\) \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2000}{2002}\)

\(\Rightarrow\) \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\Rightarrow\) \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\Rightarrow\) \(\frac{1}{2}-\frac{1}{x+1}=\frac{500}{1001}\)

\(\Rightarrow\) \(\frac{1}{x+1}=\frac{1}{2002}\)

\(\Rightarrow\) \(x+1=2002\) \(\Rightarrow\) \(x=2001\)

Phạm Trần Hoàng Anh
7 tháng 7 2020 lúc 15:55

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}\)=\(\frac{2000}{2002}\)

2.(\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\))=\(\frac{2000}{2002}\)

2.\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2000}{2002}\)

2.(\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)) = \(\frac{2000}{2002}\)

2.\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}\)

\(\frac{1}{x+1}=\frac{1}{2002}\)

2002.1 = (x+1).1

2002 = x+1

x=2001 (T/M)


Các câu hỏi tương tự
Lê Nguyễn Bảo Châu
Xem chi tiết
dương trường khánh
Xem chi tiết
Băng Hàn
Xem chi tiết
Nguyễn Duy
Xem chi tiết
Phương Thảo Nguyễn
Xem chi tiết
Xem chi tiết
👁💧👄💧👁
Xem chi tiết
Phương Thảo Nguyễn
Xem chi tiết
Xem chi tiết