\(3n+29⋮n+3\)
Ta có: \(\text{3n+29 = n+n+n+3+3+3+20}\)
\(\text{= (n+3)+(n+3)+(n+3)+20}\)
Có: \(n+3⋮n+3\)
\(\Rightarrow20⋮n+3\)
\(\Rightarrow\left(n+3\right)\inƯ\left(20\right)\)
\(\Rightarrow\left(n+3\right)\in\left\{1;2;4;5;10;20\right\}\)
\(\Rightarrow n\in\left\{-2;-1;1;2;7;17\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{1;2;7;17\right\}\)
Vậy \(n\in\left\{1;2;7;17\right\}\)