Số đối của các số \(\frac{9}{{25}};\,\frac{{ - 8}}{{27}};\, - \frac{{15}}{{31}};\frac{5}{{ - 6}};\,3,9;\, - 12,5\) lần lượt là:
\( - \frac{9}{{25}};\,\frac{8}{{27}};\,\frac{{15}}{{31}};\frac{5}{6};\, - 3,9;\,12,5\).
Số đối của các số \(\frac{9}{{25}};\,\frac{{ - 8}}{{27}};\, - \frac{{15}}{{31}};\frac{5}{{ - 6}};\,3,9;\, - 12,5\) lần lượt là:
\( - \frac{9}{{25}};\,\frac{8}{{27}};\,\frac{{15}}{{31}};\frac{5}{6};\, - 3,9;\,12,5\).
Tìm số đối của mỗi số sau: \(\frac{2}{9}; - 0,5\).
a) Sắp xếp các số sau theo thứ tự tăng dần: \(\frac{{ - 3}}{7};\,0,4;\, - 0,5;\,\frac{2}{7}\).
b) Sắp xếp các số sau theo thứ tự giảm dần: \(\frac{{ - 5}}{6};\, - 0,75;\, - 4,5;\, - 1\).
Quan sát hai điểm biểu diễn các số hữu tỉ \(\frac{5}{4}\) và \(\frac{{ - 5}}{4}\) trên trục số sau:
Nêu nhận xét về khoảng cách từ hai điểm \(\frac{5}{4}\) và \(\frac{{ - 5}}{4}\) đến điểm 0.
Các số 21; -12; \(\frac{{ - 7}}{{ - 9}}\); -4,7; -3,05 có là số hữu tỉ không? Vì sao?
So sánh:
a)\(2,4\) và \(2\frac{3}{5}\);
b) \( - 0,12\) và \( - \frac{2}{5}\)
c)\(\frac{{ - 2}}{7}\) và \( - 0,3\).
So sánh:
a) \( - \frac{1}{3}\) và \(\frac{{ - 2}}{5}\)
b) 0,125 và 0,13
c) -0,6 và \(\frac{{ - 2}}{3}\)
Biểu diễn số hữu tỉ \(\frac{7}{{10}}\) trên trục số.
Viết các số -3; 0,5; \(2\frac{3}{7}\) dưới dạng phân số.
Các số 13, -29; -2,1; 2,28; \(\frac{{ - 12}}{{ - 18}}\) có là số hữu tỉ không? Vì sao?