Giải hệ PT:
\(\left\{{}\begin{matrix}\left(x^2+x\right)y^2-4y^2+y+1=0\\xy+x^2y^2+x^3y^3-y^3+1=0\end{matrix}\right.\)
giải các hệ phương trình sau
1)\(\left\{{}\begin{matrix}x^2y^2+1=2y^2\\\left(xy+1\right)\left(2y-x\right)=2x^3y^2\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}x^3+3xy^2=\dfrac{1}{2}\\x^4+6x^2y^2+y^4=\dfrac{1}{2}\end{matrix}\right.\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}x^3\left(3+2y\right)=8\\xy\left(y^2+3y+8\right)=4\end{matrix}\right.\)
Giải pt :
\(x^4+\left(x-1\right)\left[\left(x-1\right)^2+1\right]=0\)
\(Cho\text{ }x,y,z\text{ }\in R\text{ thỏa}\text{ }xyz=1.\text{Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
\(\text{Cho x,y,z }\in R\text{ thỏa mãn điều kiện }xyz=1\text{.Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|\left|zx\right|\right).\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
Giúp e với ạ !!
Giải pt vô tỉ sau
\(x+1=\sqrt{2\left(x+1\right)+2\sqrt{2\left(x+1\right)+2\sqrt{4\left(x+1\right)}}}\)
F = \(\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\left(\dfrac{1}{x}+\dfrac{1}{y}\right).\dfrac{1}{x+y+2\sqrt{xy}}+\dfrac{2}{\left(\sqrt{x}+\sqrt{y}\right)^3}.\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)\right]\)
giải pt: \(\sqrt{\left(2x^2+x+9\right)}+\sqrt{\left(2x^2-x+1\right)}=x+4\)