a) Cho số phức z. Chứng minh rằng z là một số thực khi và chỉ khi \(z=\overline{z}\)
b) Chứng tỏ rằng số phúc sau là một số thực :
\(z=-\dfrac{3+2i\sqrt{3}}{\sqrt{2}+3i}+\dfrac{-3+2i\sqrt{3}}{\sqrt{2}-3i}\)
Giải các phương trình sau :
a) \(\left(3-2i\right)z+\left(4+5i\right)=7+3i\)
b) \(\left(1+3i\right)z-\left(2+5i\right)=\left(2+i\right)z\)
c) \(\dfrac{z}{4-3i}+\left(2-3i\right)=5-2i\)
Tìm nghịch đảo của số phức sau :
a) \(\sqrt{2}-i\sqrt{3}\)
b) \(i\)
c) \(\dfrac{1+i\sqrt{5}}{3-2i}\)
d) \(\left(3+i\sqrt{2}\right)^2\)
Xét số phức z thỏa mãn |z| =\(\sqrt{2}\). Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức w=\(\frac{2+iz}{1+z}\) là đường tròn có bán kính bao nhiêu?
Tìm các số phức \(2z+\overline{z}\) và \(\dfrac{25i}{z}\) biết rằng \(z=3-4i\)
Thực hiện các phép chia sau :
a) \(\dfrac{2+i}{3-2i}\)
b) \(\dfrac{1+i\sqrt{2}}{2+i\sqrt{3}}\)
c) \(\dfrac{5i}{2-3i}\)
d) \(\dfrac{5-2i}{i}\)
\(\overline{z}\) = \(\left(\frac{1+i}{1-i}\right)^{11}+\left(\frac{2i}{1+i}\right)^8\)
tìm modun của số phức \(\overline{z}\)+ iz
mọi người chỉ giùm mình bài này với
Gọi Zo là một nghiệm phức của phương trình \(Z^2-2Z+2016^{2017}=0\) . Số phức
\(W=\dfrac{Zo+2016^{2017}}{\overline{Zo}+1}\) có phần thực bằng bao nhiêu...?
A.\(2016^{2017}\) B.1 C.2 C.\(\sqrt{2016^{2017}}\) ..giải giúp mình với , ths trước ha...!
Giải phương trình sau trên tập số phức :
\(\left(1-i\right)z+\left(2-i\right)=4-5i\)