a) Để \(4\left(x-8\right)< 0\) thì \(x-8< 0\).
\(\Rightarrow x< 0+8\Rightarrow x< 8\)
\(\Rightarrow x\in\left\{7;6;5;4;3\right\}\)
b) Để \(-3\left(x-2\right)< 0\) thì \(x-2>0\)
\(\Rightarrow x>0+2\Rightarrow x>2\)
\(\Rightarrow x\in\left\{3;4;5;6;7\right\}\)
a) Để 4(x−8)<04(x−8)<0 thì x−8<0x−8<0.
⇒x<0+8⇒x<8⇒x<0+8⇒x<8
⇒x∈{7;6;5;4;3}⇒x∈{7;6;5;4;3}
b) Để −3(x−2)<0−3(x−2)<0 thì x−2>0x−2>0
⇒x>0+2⇒x>2⇒x>0+2⇒x>2
⇒x∈{3;4;5;6;7}