Ta có :
\(A=\dfrac{3n+1}{n+1}=\dfrac{3n+3-2}{n+1}=\dfrac{3\left(n+1\right)-2}{n+1}=3-\dfrac{2}{n+1}\)
Từ trên suy ra để A đạt giá trị nguyên thì \(\dfrac{2}{n+1}\) phải đạt giá trị nguyên hay \(n+1\inƯ\left(2\right)\)
\(\Rightarrow n+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow n\in\left\{-3;-2;0;1\right\}\)
Để \(\dfrac{3n+1}{n+1}\) đạt giá trị nguyên, thì:
\(3n+1⋮n+1\)
\(\Leftrightarrow3n+3-2⋮n+1\)
Hay \(3\left(n+1\right)-2⋮n+1\)
Vì \(3\left(n+1\right)⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)
Thế từng giá trị vào tổng \(n+1\), ta có:
\(\Rightarrow n\in\left\{-3;-2;0;1\right\}\)
Vậy n có 4 giá trị thỏa mãn
Chúc bn học tốt!!!