Bài 6: Giải bài toán bằng cách lập hệ phương trình (Tiếp theo)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Thùy Dương

Tìm một số tự nhiên có hai chữ số , biét rằng chữ số hàng trục lớn hơn chữ số hàng đơn vị là 2 , nếu viết thêm chữ số bằng chữ số hàng chục vào bên phải thì được một số lớn hơn số ban đầu là 682.

giúp mk vs mai mk có tiết ktra rồi

Gọi số cần tìm là \(\overline{ab}=10a+b\) \(\left(0\le b\le7,1< a< 10,b< a\right)\)

Vì chữ số hàng chục lớn hơn chữ số hàng đơn vị là 2 nên ta có phương trình: \(a-b=2\left(1\right)\)

Nếu viết thêm chữ số bằng chữ số hàng chục vào bên phải thì số mới là \(\overline{aba}=100a+10b+a=101a+10b\)

Vì số mới hơn số ban đầu là 682 đơn vị nên ta có phương trình: \(101a+10b-682=10a+b\Leftrightarrow91a+9b=682\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) ta có hệ phương trình:

\(\left\{{}\begin{matrix}a-b=2\\91a+9b=682\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=a-2\\91a+9a-18=682\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=5\\a=7\end{matrix}\right.\)

Vậy số cần tìm là \(75\)

Nguyễn Thành Trương
13 tháng 2 2019 lúc 18:09

Gọi chữ số hàng chục của số cần tìm là a, chữ số hàng đơn vị của số cần tìm là b (a thuộc N*, b thuộc N*)

Khi đó, số cần tìm có dạng: 10a+b

Nếu viết thêm chữ số hạng chục vào bên phải số cần tìm thì khi đó số mới có dạng: 100a+ 10b+a=101a+10b

Mà số mới này hơn số đã cho 682 đơn vị

=>101a+10b-10a-b=682

<=>91a+9b=682 (1)

Theo đề ta có: a-b=2 <=>b=a-2(2)

Thay (2) vào (1) ta được:

91a+9 (a-2)=682

<=>100a=700

<=>a=7(thỏa điều kiện)

=> b=a-2=7-2=5 (thỏa điều kiện)

Vậy số đã cho là 75


Các câu hỏi tương tự
bảo hân
Xem chi tiết
Trang Nguyễn Quỳnh
Xem chi tiết
Nguyễn Trung
Xem chi tiết
Kim Tuyền
Xem chi tiết
dung doan
Xem chi tiết
Trà My
Xem chi tiết
Pikachuuuu
Xem chi tiết
Phạm Thị Cẩm Quyên
Xem chi tiết
Ngọc Nguyễn Ánh
Xem chi tiết