Gọi số cần tìm là abcd (a,d \(\in\) N* ; b,c \(\in\) N ; a,b,c,d < 10 )
Số viết theo thứ tự ngược lại là dcba
Theo bài ra , ta có :
abcd . 6 = dcba
Ta thấy 6d có tận cùng là a nên a là số chẵn (1)
Mặt khác , a > 0 vì nếu a >1 thì dcba là số có nhiều hơn 4 chữ số .
Mà a thuộc tập hợp các số tự nhiên khác 0
=> a = 1
=> a là số lẻ , mâu thuẫn với (1)
=> abcd không có giá trị thỏa mãn đề bài
Vậy không có số nào thỏa mãn đề bài.
Gọi số cần tìm là \(\overline{abcd}\)( a khác 0)
Theo đề toán ta có :
\(6.\overline{abcd}=\overline{dcba}\\ \Rightarrow6000a+600b+60c+d=1000d+100c+10b+a\\ \Rightarrow5999a+590b=999d+40c\)
Mình giải đk tới đây thôi !!