Giả sử \(F\left(x\right)\) là một nguyên hàm của hàm số đã cho. Khi đó \(F'\left(x\right)=x\) đối với \(x>0\) và \(F'\left(x\right)=-x\) đối với \(x<0\). Do đó \(F\left(x\right)=\frac{1}{2}x^2+C_1\) đối với \(x>0\) và \(F\left(x\right)=-\frac{1}{2}x^2+C_2\) đối với \(x<0\) trong đó \(C_1\) và \(C_2\) là những hằng số tùy ý.
Theo điều kiện, hàm số \(F\left(x\right)\) có đạo hàm tại mọi điểm nên nó liên tục trên toàn trục số. Tính liên tục tại điểm \(x=0\) suy ra \(C_1=C_2\). Như vậy từ giả thiết hàm số \(f\left(x\right)=\left|x\right|\) có nguyên hàm \(F\left(x\right)\) suy ra nguyên hàm đó có dạng :
\(F\left(x\right)=\frac{x^2}{2}+C,x\ge0 \) và \(F\left(x\right)=-\frac{x^2}{2}+C,x<0\) trong đó C là hằng số tùy ý.
Dễ dàng chứng minh rằng mỗi hàm số thu được đều là nguyên hàm của hàm số đã cho \(\left|x\right|\), ở đây đạo hàm tại điểm \(x_0=0\) cần được tính theo định nghĩa