Tìm min:
\(2A=\frac{2x^2+4x+6}{x^2+2}=1+\frac{x^2+4x+4}{x^2+2}\)
\(=1+\frac{\left(x+2\right)^2}{x^2+2}\ge1\)
\(\Rightarrow A\ge\frac{1}{2}\)
Vậy GTNN là \(A=\frac{1}{2}\) khi x = - 2
Tìm max
\(A=\frac{x^2+2x+3}{x^2+2}=\frac{2\left(x^2+2\right)-x^2+2x-1}{x^2+2}\)
\(=2-\frac{x^2-2x+1}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)
Vậy GTLN là \(A=2\) đạt được khi x = 1