Cho a,b,c >0 t/m a+b+c=abc-2. Tìm max
\(P=\sqrt{\dfrac{1}{a+1}}+\sqrt{\dfrac{1}{b+1}}+\sqrt{\dfrac{1}{c+1}}\)
Tìm GTNN của biểu thức: \(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\) với a, b, c>0 và a+b+c=6
cho \(\left(a+b-c\right)^2=ab\) và a,b,c>0 tìm GTNN của \(P=\dfrac{c^2}{a+b-c}+\dfrac{c^2}{a^2+b^2}+\dfrac{\sqrt{ab}}{a+b}\)
Cho a,b,c >0 t/m \(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}=\sqrt{2011}\).
TÌm min \(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
Cho \(0\le a\le b\le c\le1\). Tìm max
\(A=\left(a+b+c+3\right)\left(\dfrac{1}{a+1}+\dfrac{1}{b+1}+\dfrac{1}{c+1}\right)\)
cho so thuc a,b,c voi a ,b duong va c\(\ne\)0 thoa man
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
1/chung minh c<0 , a+c>0 va b+c >0
2/chung minh \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
cho a,b,c>0. tìm GTNN của \(P=\dfrac{a^2}{c\left(a^2+c^2\right)}+\dfrac{b^2}{a\left(a^2+b^2\right)}+\dfrac{c^2}{b\left(b^2+c^2\right)}\)
Tìm max A=\(\dfrac{1}{a^3+b^3+1}\)+\(\dfrac{1}{b^3+c^3+1}\)+\(\dfrac{1}{c^3+a^3+1}\)với a,b,c>0 va abc=1
Cho a,b,c>0 t/m \(a^2+b^2+c^2=3\). Tìm max
P\(P=\dfrac{a}{a^2+2b+3}+\dfrac{b}{b^2+2c+3}+\dfrac{c}{c^2+2a+3_{ }}\le\dfrac{1}{2}\)