\(\Delta'=\left(m+1\right)^2-\left(m^2-2m+4\right)=4m-3>0\Rightarrow m>\dfrac{3}{4}\)
\(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_2=3x_1\end{matrix}\right.\) \(\Rightarrow4x_1=2m+2\Rightarrow x_1=\dfrac{m+1}{2}\)
Lại có \(x_1x_2=m^2-2m+4\Leftrightarrow3x_1^2=m^2-2m+4\Leftrightarrow3\left(\dfrac{m+1}{2}\right)^2=m^2-2m+4\)
\(\Leftrightarrow3m^2+6m+3=4m^2-8m+16\Leftrightarrow m^2-14m+13=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=13\end{matrix}\right.\)