1.Cho phương trình: \(x^2-2\left(m-1\right)+2m-5=0\) (m là tham số). Chứng minh phương trình luôn có hai nghiệm phân biệt x1;x2 với mọi m. Tìm m để các nghiệm đó thỏa mãn hệ thức:
\(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x^2_2-2mx_2-x_1+2m-3\right)=19\)
Cho phương trình: x3- 5x2 + (2m+5)x-4m+2 = 0 (m là tham số )
a) Tìm đk của m để pt có 3 nghiệm phân biệt x1,x2,x3
b) Tìm gt của m để x12 + x22 + x32 = 11
Cho phương trình: \(x^2\) - (2m+3)x - 2m - 4 = 0 (m là tham số).
a) Tìm m để phương trình có 2 nghiệm phân biệt.
b) Tìm m phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn |x1| + |x2| = 5
Tìm m để phương trình x^2 − 2m x + m - 3 = 0 có hai nghiệm phân biệt x1, x2 thoả mãn (x1-2x2)^2+x2-2mx1=20
Cho phương trình \(x^2-\left(2m+1\right)x+m^2+m=0\)
Tìm m để phương trình có hai nghiệm phân biệt thỏa mãn \(-2< x_1< x_2< 2\)
Tìm hệ thức liên hệ giữa x1 và x2 không chứa m
cho phương trình x^2-mx+2m-4=0 tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn /x1\+/x2\=3 (đang cần gấp ạ)
Cho phương trình x2 - (2m+5)x +2m + 1 = 0 với m là tham số có 2 nghiệm dương phân biệt x1,x2 . Tìm m thỏa mãn ∣∣√x1−√x2∣∣|x1−x2| có giá trị nhỏ nhất.
Cho phương trình x^2 - (m - 2)x + 2m -3 = 0 (ra là tham số). a) Tìm điều kiện của ra để phương trình có hai nghiệm phân biệt x1,x2. b) Với ra tìm được ở trên, tìm biểu thức liên hệ giữa x1,x2 không phụ thuộc vào m.
Cho phương trình \(x^2-\left(m+1\right)x+m=0\left(1\right)\)(với m là tham số)
a.Giải phương trình (1) khi m=-2
b.Tìm giá trị của m để phương trình (1) có nghiệm phân biệt x1,x2 thỏa mãn:
(\(x^2_1-mx_1+x_2+2m\))\(\left(x^2_2-mx_2+x_1+2m\right)=9x_1x_2\)