\(\left\{{}\begin{matrix}x+y+xy=m\\x^2+y^2=m\end{matrix}\right.\) ( Đặt \(x+y=a;xy=b\) )
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=m\\a^2-2b=m\end{matrix}\right.\)
\(\Leftrightarrow a^2+2a=3m\)
\(VT=a^2+2a=\left(a+1\right)^2-1\ge-1\)
Do đó để HPT có nghiệm \(\Rightarrow3m\ge-1\Leftrightarrow m\ge-\frac{1}{3}\)