Tìm giá trị nhỏ nhất của hàm số \(f\left(x\right)=\frac{2}{x^2}-\frac{1}{2x-2}\) trên khoảng (0;1)
Tìm tất cả giá trị \(m\) để giá trị lớn nhất của hàm số:
1/ \(y=\dfrac{2x+m}{x+1}\) trên \(\left[0;1\right]\) bằng 2.
2/ \(y=\left|x^3-3x^2+m\right|\) trên \(\left[0;3\right]\) bằng 5.
3/ \(y=\left|\dfrac{x^2+mx+m}{x+1}\right|\) trên \(\left[1;2\right]\) bằng 2.
4/ \(y=\left|\dfrac{1}{4}x^4-\dfrac{19}{2}x^2+30x+m-20\right|\) trên \(\left[0;2\right]\) không vượt quá 20.
cho hàm số f(x)= \(\frac{2x^2+x+1}{x+1}\)tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn [0;1]
Câu 1 : Tìm GTNN của hàm số \(y=cos2x+2sin^3x\) trên \(\left[0;\Pi\right]\)
A. 1 B. \(\frac{2}{3}\) C. 0 D. \(\frac{19}{27}\)
Câu 2 : Tìm m sao cho GTLN của hàm số \(y=x^3-3x+2m-1\) trên đoạn [0;2] bằng 5
A. 2 B. 3 C. 4 D. -2
Câu 3 : Tìm m sao cho GTLN của hàm số \(y=\frac{2x-m}{x-3}\) trên đoạn [0;2] bằng 3
A. m = 9 B. m = 7 C. m = 6 D. m = 1
Câu 4 : Cho các số thực dương x , y thỏa mãn xy + y = 2 . Tìm GTNN của biểu thức P = x + y2
A. 1 B. 2 C. \(\frac{3}{2}\) D. \(\frac{5}{2}\)
Cho hàm số y= \(\dfrac{x-m^{^2}+m}{x+1}\) với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0;1] bằng -2.
Cho hàm số f(x) = \(\dfrac{x+m}{x+1}\) (m là tham số thực). Gọi S là tập hợp tất cả các giá trị của tham số m sao cho \(max_{[0;1]}\left|f\left(x\right)\right|\) + \(min_{[0;1]}\left|f\left(x\right)\right|\) =2. Số phần tử của S là?
Tìm GTLN và GTNN của \(y=\frac{x^3+2x^2+4x}{x^4+8x^2+16}\)
Cho hàm số f(x)=\(\dfrac{x+m}{x+1}\)( m là tham số thực) gọi S là tập hợp tất cả các giá trị của m sao cho \(\min\limits_{\left[0;1\right]}\left|f\left(x\right)\right|+\max\limits_{\left[0;1\right]}\left|f\left(x\right)\right|=2\). Số phần tử của A là
A.6
B.2
C.1
D.4
Tìm GTNN, GTLN của:
\(A=\frac{x^4+1}{\left(x^2+1\right)^2}\)