Sửa đề: Tìm GTLN
\(A=\dfrac{-3\sqrt{x}-6+11}{\sqrt{x}+2}=-3+\dfrac{11}{\sqrt{x}+2}< =\dfrac{11}{2}-3=\dfrac{5}{2}\)
Dấu = xảy ra khi x=0
Sửa đề: Tìm GTLN
\(A=\dfrac{-3\sqrt{x}-6+11}{\sqrt{x}+2}=-3+\dfrac{11}{\sqrt{x}+2}< =\dfrac{11}{2}-3=\dfrac{5}{2}\)
Dấu = xảy ra khi x=0
Cho hai biểu thức:
A = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}\) và B = \(\dfrac{3}{\sqrt{x}+2}-\dfrac{8+2\sqrt{x}}{x-4}\) với \(x\ge0;x\ne4\)
Biểu thức B sau khi thu gọn được B = \(\dfrac{1}{\sqrt{x}+2}\). Tìm các giá trị của x để \(P=3A+2B\) đạt GTNN
Cho hai biểu thức:
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\); \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\) với \(x\ge0,x\ne4,x\ne9\)
a) Tính giá trị của A khi \(x=\dfrac{1}{4}\)
b) Rút gọn B.
c) Tìm giá trị nguyên của x để B nhận giá trị là số tự nhiên.
Cho \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\) với \(x\ge0,x\ne1\)
a) Rút gọn A
b) Tìm GTNN của A
c) Tìm x để \(A=\dfrac{1}{2}\)
d) CMR: \(A\le\dfrac{2}{3}\)
cho hai biểu thức
A=\(\dfrac{\sqrt{x}}{\sqrt{x}+5}\) và B = \(\dfrac{2\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{2-5\sqrt{x}}{4-x}\) (\(x\ge0;x\ne4\))
a, tìm giá trị của A khi x = 25
b, rút gọn biểu thức B
c, tìm số tự nhiên x để \(\dfrac{B}{A}\le\dfrac{1}{3}\)
Cho biểu thức \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}};x\ge0,x\ne1\)
a) Rút gọn P.
b) Tính giá trị của P tại x thỏa mãn \(\left|2x-5\right|=3\)
c) Tìm các giá trị của x để P = 3.
d) Tìm các giá trị của x để \(P>\dfrac{1}{2}\).
e) Tìm các giá trị nguyên của x để P có giá trị nguyên.
Bài 1: Cho \(A=\left(\dfrac{x-4}{\sqrt{x}-2}+\dfrac{x\sqrt{x}-8}{4-x}\right):\left[\dfrac{\left(\sqrt{x}-2\right)^2+2\sqrt{x}}{\sqrt{x}+2}\right]\)với \(x\ge0\); \(x\ne4\)
a, Rút gọn A
b, CMR: \(A< 1\) với \(x\ge0\); \(x\ne4\)
c, Tìm x để A nguyên
Tìm tất cả các giá trị của x để biểu thức B = \(\dfrac{x+\sqrt{x}+4}{\sqrt{x}+1}\left(x\ge0\right)\) đạt GTNN
\(A=\dfrac{3x}{x\sqrt{x}+1}-\dfrac{\sqrt{x}-1}{x-\sqrt{x}+1}-\dfrac{1}{1+\sqrt{x}}\) với \(x\ge0\)
a) Rút gọn A
b) Tìm GTLN của A
Bài 1 : Cho \(P=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\) với \(x\ge0\)
a) Tìm x để \(P=\dfrac{8}{9}\)
b) Tìm GTLN, GTNN của P
Bài 2 : Rút gọn \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)