\(A=\dfrac{32}{x^2+2x+4}=\dfrac{32}{x^2+2x+1+3}=\dfrac{32}{\left(x^2+2x+1\right)+3}\)
= \(\dfrac{32}{\left(x+1\right)^2+3}\)
do (x+1)2 ≥ 0 ∀x
=> (x+1)2+3 ≥ 3
=> \(\dfrac{32}{\left(x+1\right)^2+3}\le\dfrac{32}{3}\)
=> A ≤ \(\dfrac{32}{3}\)
max A= \(\dfrac{32}{3}\) dấu "=" xảy ra khi
x+1=0
=> x=-1
vậy max A= \(\dfrac{32}{3}\) khi x=-1