Bạn tự hiểu là giới hạn khi x tiến tới 1 nhé
a/\(=lim\frac{\left(x-1\right)\left(x^{2015}+x^{2014}+...+x+1\right)}{\left(x-1\right)\left(x^{2014}+x^{2013}+...+x+1\right)}=lim\frac{x^{2015}+x^{2014}+...+x+1}{x^{2014}+x^{2013}+...+x+1}=\frac{2016}{2015}\)
b/ \(=lim\frac{\left(x-1\right)\left(x^{m-1}+x^{m-2}+...+x+1\right)}{\left(x-1\right)\left(x^{n-1}+x^{n-2}+...+x+1\right)}=lim\frac{x^{m-1}+...+1}{x^{n-1}+...+1}=\frac{m}{n}\)
Hoặc nếu bạn được sử dụng L'Hopital thì cứ việc đạo hàm tử-mẫu, lẹ hơn các trên nhiều