Nếu
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x+1}-2\sqrt{x^2-x+1}\right)=\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}-2\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}\right)\)
\(=+\infty.\left(1-2\right)=-\infty\)
Nếu:
\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+x+1}-2\sqrt{x^2-x+1}\right)=\lim\limits_{x\rightarrow-\infty}x\left(-\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+2\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}\right)\)
\(=-\infty.\left(-1+2\right)=-\infty\)