\(P=\left|\sqrt{x-3}+3\right|+\left|\sqrt{x-3}+1\right|\)
\(=2\sqrt{x-3}+4>=4\)
Dấu = xảy ra khi x=3
\(P=\left|\sqrt{x-3}+3\right|+\left|\sqrt{x-3}+1\right|\)
\(=2\sqrt{x-3}+4>=4\)
Dấu = xảy ra khi x=3
(2,0 điểm) Cho các biểu thức A = (sqrt(x))/(2sqrt(x) - 4); B = (sqrt(x))/(sqrt(x) + 2) +3(sqrt(x)-x /x-4 với x >= 0 ,x ne4 1) Tính giá trị của A khi x = 36 . 2) Rút gon biểu thức C = B : A . 3) Tìm các giá trị của x để C. sqrt(x) < 4/3 .
Bài 1 (2,0 điểm) Cho A = (x * sqrt(x) + 1)/(x + 2sqrt(x) + 1) * v * dB = (2x + 6sqrt(x) + 7)/(x * sqrt(x) + 1) - 1/(sqrt(x) + 1) * v * dix >= 0
a) Rút gọn A và tính giá trị của A khi x = 4
b) Rút gọn M = A B. Tm * d\&M>2
c) Tìm x để M là số nguyên
cho biểu thức
p=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
a) rÚT GỌN p
B) TÌM GIÁ TRỊ CỦA X ĐỂ p=-1
C) TÌM X THUỘC Z ĐỂ P THUỘC Z
D) SO SÁNH P VỚI 1
E) TÌM GIÁ TRỊ NHỎ NHẤT CỦA p
Cho P = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}+\dfrac{3x+3}{9-x}\) và Q = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức P. Tính M = P : Q
b) Tìm giá trị nhỏ nhất của biểu thức A = \(x.M+\dfrac{4x+7}{\sqrt{x}+3}\)
`Cho biểu thức P=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right)\div\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
a)Rút gọn P
b)Tìm giá trị nhỏ nhất
Lm nhanh giúp mk nhé!
Cho A = (1/(sqrt(x) - 1) + (sqrt(x))/(x - 1)) * (x - sqrt(x))/(2sqrt(x) + 1) * v x > 0 x ne1 . 8 1. Rút gọn biểu thức A; 2. Tính giá trị của A khi x = 9
3. Tìm m để phương trình A = m có nghiệm.Cho các biểu thức A=\(\dfrac{6}{x-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\) và B=\(\dfrac{3}{\sqrt{x}-1}\) với x≥0, x≠1, x≠9
a) Tính giá trị của B khi x=4
b) Rút gọn biểu thức P=A-B
c) Tìm xϵN để biểu thức \(\dfrac{1}{P}\) đạt giá trị lớn nhất
Cho biểu thức: N=\(\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)với x ≥0; x≠1
a) Rút gọn N
b) Tìm giá trị nhỏ nhất của N
c) Tim x để biểu thức M=\(\dfrac{2\sqrt{x}}{N}\)nhận giá trị nguyên
Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức:
\(A=\sqrt{1-x}+\sqrt{1+x}\)
cho biểu thức B=(1/(sqrt(x) + 3) + (2sqrt(x))/(x - 9) ) 2 sqrt x +6 sqrt x -1 với x >= 0 x ne1;x ne9 a) rút gọn B