Tìm giá trị nhỏ nhất
C= x^2+4x+100
C= x(x+4)+100
Ta có : \(x\left(x+4\right)\ge0\forall x\)
100>0
=> \(x\left(x+4\right)+100\ge0\forall x\)
=> \(C\ge100\)
Dấu '' = '' xảy ra <=> x(x+4)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy MinC=100 \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
*Tìm giá trị nhỏ nhất của biểu thức
C=x^2+4x+100
= (x+2)^2 + 96 ≥ 96
Dấu "=" xảy ra <=> x = -2
Vậy Min C = 96 <=> x = -2