Giải:
Dễ thấy: \(\left|x-1\right|=\left|1-x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x-2001\right|+\left|1-x\right|\) \(\ge\left|x-2001+1-x\right|=2000\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2001\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2001\\x\ge1\end{matrix}\right.\)
\(\Leftrightarrow1\le x\le2001\)
Vậy \(A_{min}=2000\Leftrightarrow1\le x\le2001\)
A =/x-2001/ + /x-1/
Với x<1 ta có A = 2001 - x +1 -x =2002-2x. Khi đó A>2002
Với 1<= x <= 2001 ta có A = 2001-x +x-1 = 2000
Với x>2001ta có A=x-2001+x -1 = 2x -2000. Khi đó A> 2.2001 - 2000 =2002.
Vậy minA = 2000 khi 1<= x <= 2001.