tìm m để hàm số
\(f\left(x\right)\left\{{}\begin{matrix}\dfrac{\sqrt[3]{3x+5}-2}{1-x^3},x< 1\\\dfrac{2m\sqrt{x}+3}{5},x>=1\end{matrix}\right.\)liên tục trên r
Tìm giá trị của tham số m để hàm số :
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-x-2}{x-2};\left(x\ne2\right)\\m;\left(x=2\right)\end{matrix}\right.\) liên tục tại \(x=2\)
Xét tính liên tục của các hàm số sau trên tập xác định của chúng :
a) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-2}{x-\sqrt{2}};\left(x\ne\sqrt{2}\right)\\2\sqrt{2};\left(x=\sqrt{2}\right)\end{matrix}\right.\)
b) \(g\left(x\right)=\left\{{}\begin{matrix}\dfrac{1-x}{\left(x-2\right)^2};\left(x\ne2\right)\\3;\left(x=2\right)\end{matrix}\right.\)
tìm các khoảng và nửa khoảng mà trên đó mỗi hàm số liên tục:
f(x)=\(\left\{{}\begin{matrix}2x+1\left(0< x< 2\right)\\2\left(x\ge2\right)\\\left(x-1\right)^2\left(x\le0\right)\end{matrix}\right.\)
f(x)=\(\left\{{}\begin{matrix}\dfrac{x^2-3x+2}{x-1}\left(x\ne1\right)\\\dfrac{-1}{2}\left(x=1\right)\end{matrix}\right.\)
Tìm a để hàm số liên tục trên R
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-3x+2}{\left|x-2\right|},x\ne2\\a,x=2\end{matrix}\right.\)
Tìm m để các hàm số f(x) = \(\left\{{}\begin{matrix}\dfrac{\sqrt{x+1}-1}{2x}khix>0\\2x^2+3mx+1khix\le0\end{matrix}\right.\) liên tục tại x=0
1/ Xét tính liên tục của hàm số tại một điểm:
a) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-4}{x^2+x-2};x\ne2\\2x+1;x=2\end{matrix}\right.\) tại \(x_0=2\)
b) \(f\left(x\right)=\left\{{}\begin{matrix}\left(x+3\right)^3-27;x>0\\x^3+27;x\le0\end{matrix}\right.\) tại \(x_0=0\)
c) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^3-6x^2-x+6}{x-1};x>1\\3x+5;x\le1\end{matrix}\right.\) tại \(x_0=1\)
d) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{3x+10}-x-4}{x+2};x\ne-2\\-\dfrac{1}{4};x=-2\end{matrix}\right.\) tại \(x_0=-2\)
2/ Tìm \(m\) để hàm số sau liên tục tại điểm đã chỉ ra:
a) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-3x+2}{\sqrt{x+3}-2};x\ne1\\mx+2;x=1\end{matrix}\right.\) tại \(x_0=1\)
b) \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt[3]{2x^2=9}-3}{2x-6};x\ne3\\m;x=3\end{matrix}\right.\) tại \(x_0=3\)
Cho hàm số :
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x^2-1}+\sqrt[3]{\left(x-1\right)^3}}{\sqrt{x-1}}\forall x>1\\\sqrt{2};.....x=1\\\dfrac{\sqrt[3]{x}-1}{\sqrt{2}-\sqrt{x+1}};....\left|x\right|< 1\end{matrix}\right.\)
Xét tính liên tục của hàm số tại x0=1