Ta có:
\(x+y+xy=2\)
\(\Leftrightarrow x+y+xy+1=3\)
\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=3\)
\(\Leftrightarrow\left(y+1\right)\left(x+1\right)=3\)
Mà \(3=1.3=3.1=\left(-1\right).\left(-3\right)=\left(-3\right).\left(-1\right)\)
Ta có bảng sau:
\(x+1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(y+1\) | \(3\) | \(1\) | \(-3\) | \(-1\) |
\(x\) | \(0\) | \(2\) | \(-2\) | \(-4\) |
\(y\) | \(2\) | \(0\) | \(-4\) | \(-2\) |
Vậy \(\left(x;y\right)=\left(2;0\right);\left(0;2\right);\left(-2;-4\right);\left(-4;-2\right)\)