Cho các số x;y thỏa mãn : \(5x^2+5y^2+8xy-2x+2y+2=0\)
Tính giá trị biểu thức:\(M=\left(x+y\right)^{2019}+\left(x-2\right)^{2020}+\left(y+1\right)^{2021}\)
tính giá trị biểu thức M=(x+y)2020+(x+2)2021+(y-1)2022
Cho các số x, y thỏa mãn đẳng thức: \(5x^2+5y^2+8xy+2x-2y+2=0\)
Tính giá trị của biểu thức:
M = \(\left(x+y\right)^{2019}+\left(x+2\right)^{2020}+\left(y-1\right)^{2021}\)
Cho 3 số x,y,z thỏa mãn x+y+z=1/x+1/y+1/z. Tính Q=(x^2018 - 1).[(-y)^2019 + 1].(z^2020 - 1)
1)Cho số thực x, y, z thỏa mãn:
2x2+y2+z2-2xy-2x+1=0. Tính:
A=x2018+y2019+z2020
2) cho số thực ạ, b, c thỏa mãn:
a+b+c=6 và a2+b2+c2=12. Tính:
P=(a-3) 2019+(b-3) 2019+(c-3) 2019
Cho số thực x và y thỏa mãn \(x\ne y;x\ne0;y\ne0\)
CMR: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
Cho số thực x;y thỏa mãn: x^2 + xy + 2y^2 = 1 Tìm min và max của A = x - 2y + 3
cho các số thực dương x,y,x thỏa mãn x+y≤z. CMR: \(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)\ge\dfrac{27}{2}\)
Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết 48
Câu 2: Tìm tất cả các số nguyên x y, thỏa mãn x > y > 0: x^3 + 7y = y^3 +7x
Câu 3: Giải phương trình : (8x – 4x^2 – 1)(x^2 + 2x + 1) = 4(x^2 + x + 1)