Ta có (x−y)(x+y)=y+1>0.
Suy ra x>y.
Suy ra x≥1 nên x+y≥y+1≥1.
Mặt khác, x−y>0 nên x−y≥1.
Do đó, (x−y)(x+y)≥y+1≥y+1.
Dấu \(\Leftrightarrow\)y+1=1;x+y=y+1;x−y=1.
Tức là
Ta có (x−y)(x+y)=y+1>0.
Suy ra x>y.
Suy ra x≥1 nên x+y≥y+1≥1.
Mặt khác, x−y>0 nên x−y≥1.
Do đó, (x−y)(x+y)≥y+1≥y+1.
Dấu \(\Leftrightarrow\)y+1=1;x+y=y+1;x−y=1.
Tức là
Chứng min rằng không có số x,y nào thỏa mãn đẳng thức:
x2 + 1998 = y2
bài 1:Chứng tỏ rằng:
a) a = 20053 - 1 chia hết cho 2004
b) b= 20053+125 chia hết cho 2010
bài 2: Chứng tỏ rằng:
a) P = x6+1 chia hết cho x2+1
b) Q = x6-y6 chia hết cho x-y và chia hết cho x+y
bài 3: tìm cặp số (x,y) thỏa mãn đẳng thức:
x^2( x+3) + y^2(x+5) -(x+y)(x^2-xy+y^2) =0
bài 4: tìm cặp số (x,y) thỏa mãn đẳng thức:
( 2x-y)(4x^2+2xy+y^2)+(2x+y)(4x^2-2xy+y^2)-16x(x^2-y)=32
giúp mình với,mk cảm ơn.
bài 1 : cho biểu thức
A= 5x + 2y
B= 9x + 7y
a) rút gọn biểu thức 7A - 2B
b) CMR : Nếu số nguyên x ,y thoả mãn 5x+2y chia hết cho 17 thì 9x +7y cũng chia hết cho 17
tìm tất cả các cặp số nguyên x,y thỏa mãn : x2(y-1)+y2(x-1)=1
giúp mình vs:
Tìm tất cả các cặp số nguyên (x,y) thỏa mãn: x2(y-1)+y2(x-1)=1
cho x,y thỏa mãn đẳng thức 3x^2 +3y^2+4xy+2xy +2x-2y+2=0. Tính giá trị của biểu thức M=(x+y)^2010+(x+2)^2011+(y-1)^2012
CÁC BẠN GIÚP MK VS MK CẦN GẤP
Cho x, y là các số nguyên thỏa mãn: x^2 -2y= xy. Tìm GTLN của Q= x-y/x+y
tìm các số nguyên x,y không nhỏ hơn 2 sao cho xy-1 chia hết cho (x-1)(y-1)