Ta có: (\(3y^3+13y^2-7y+5\)) \(:\left(3y-2\right)=y^2+5y+1+\frac{7}{3y-2}\)
Để (\(3y^3+13y^2-7y+5\))chia hết cho \(\left(3y-2\right)\) thì \(\left(3y-2\right)\) ϵ Ư (7) = { + 1; + 7 }
* Nếu \(3y-2=-1=>y=\frac{1}{3}\left(loại\right)\)
* Nếu \(3y-2=1=>y=1\)
* Nếu \(3y-2=-7=>y=\frac{-5}{3}\)(loại)
* Nếu \(3y-2=7=>y=3\)
Vậy để \(\left(3y^3+13y^2-7y+5\right)\)chia hết cho \(\left(3y-2\right)\) thì yϵ { 1;3}