\(y'=1-\frac{m}{\left(x-m\right)^2}=\frac{x^2-2mx+m^2-m}{\left(x-m\right)^2}\)
Để hàm số đồng biến trên khoảng đã cho thì hàm cần xác định và có đạo hàm không âm trên khoảng đó
- Để hàm số xác định trên khoảng thì \(m\le1\)
- Để \(x^2-2mx+m^2-m\ge0;\forall x>1\)
\(\Delta'=m^2-m^2+m=m\)
TH1: \(\Delta'\le0\Leftrightarrow m\le0\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left(x_1-1\right)\left(x_2-1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-3m+1\ge0\\2m< 2\end{matrix}\right.\)
\(\Rightarrow0< m\le\frac{3-\sqrt{5}}{2}\)
Vậy \(m\le\frac{3-\sqrt{5}}{2}\)