Tìm các cặp số nguyên dương(a;b) thỏa mãn 9a^2b^2-5a+5b là số chính phương và a^2019=2020b^2018
Cho biểu thức: \(A=\left(\dfrac{1}{2a+b}-\dfrac{a^2-1}{2a^3-b+2a-a^2b}\right)\div\left(\dfrac{4a+2b}{a^3b+ab}-\dfrac{2}{a}\right)\)
a) Rút gọn A
b) Biết \(2a^2+2b^2=5ab;a>b>0\). Tính A
Cho a,b là 2 số thực dương t/m: a+b≤1a+b≤1. Tìm GTNN của A=1a2+b2+2012ab+1ab+4ab
CMR nếu a,b,c là các số thực dương thỏa mãn điều kiện
abc=ab+bc+ca thì \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}< \frac{3}{16}\)
Cho 2b=1+ab. Cmr \(\dfrac{a+1}{a-1}-\dfrac{b+1}{b-1}=2\)
C/m rằng:
(a-b).(a2+ab+b2)-(a+b).(a2-ab-b2) = -2b3
xác định a,b sao cho x^4 + x^3 +ax^2 +(a+b).x +2b+1 chia hết x^3 +ax+b
Cho a, b, c \(\ne\)0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}=0\). Tính \(E=\dfrac{a^2b^2c^2}{a^2b^2+b^2c^2-a^2c^2}+\dfrac{a^2b^2c^2}{b^2c^2+c^2a^2-a^2b^2}+\dfrac{a^2b^2c^2}{c^2a^2+a^2b^2-b^2c^2}.\)