\(\sqrt{a-2}\ge0\Leftrightarrow a\ge2\)
\(\sqrt{b+3}\ge0\Leftrightarrow b\ge-3\)
\(B=\sqrt{a-2}+\sqrt{b+3}\ge0\)
Vậy GTNN của B là 0 \(\Leftrightarrow\hept{\begin{cases}a=2\\b=-3\end{cases}}\)
\(\sqrt{a-2}\ge0\Leftrightarrow a\ge2\)
\(\sqrt{b+3}\ge0\Leftrightarrow b\ge-3\)
\(B=\sqrt{a-2}+\sqrt{b+3}\ge0\)
Vậy GTNN của B là 0 \(\Leftrightarrow\hept{\begin{cases}a=2\\b=-3\end{cases}}\)
Tìm số tự nhiên x để biểu thức B đạt giá trị lớn nhất. Biết B = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
2) Cho a >= 0 b > 0 và a ^ 2 + b ^ 2 = 8 Tìm giá trị lớn nhất của biểu thức M = sqrt(3) * (sqrt(a(a + 2b)) + sqrt(b(b + 2a)))
Cho hai biểu thức: P = (sqrt(x - 2))/(sqrt(x) - 3) và Q = √x 6√x + 3 √x-3 9-x √x+3 (với x>0; x#9) a) Tính giá trị của P khi x = 9 . b) Rút gọn Q. c) Tìm x để biểu thức A = P.Q đạt giá trị nhỏ nhất.
Tìm x để biểu thức S=A.B đạt giá trị lớn nhất:
a)Rút gọn B
b)Tìm x để biểu thức S=A.B đạt giá trị lớn nhất
B=\(\sqrt{\dfrac{x}{x-1}}+\sqrt{\dfrac{1}{x+2}}-\dfrac{3\sqrt{x}}{\sqrt{x+x-2}}\)
A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}+2}vs\)
Câu 1: Rút gọn
\(\dfrac{2}{\sqrt{5}-\sqrt{3}}+\dfrac{3}{\sqrt{6}+\sqrt{3}}\)
Câu 2:
Cho A= \(\dfrac{1}{x-2\sqrt{x-5}+3}\). Tìm giá trị lớn nhất của A, giá trị đó đạt được khi x bằng bao nhiêu?
Bài 1:Tính
\(\frac{\sqrt{14}-\sqrt{7}}{1-\sqrt{2}}\)
Bài 2:
a,Rút gọn:\(A=2\sqrt{12x}-4\sqrt{3x}+27-3\sqrt{27x}\)
b,Tìm x để A đạt giá trị lớn nhất
Cho hai biểu thức:
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}\); \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\) với \(x\ge0,x\ne4,x\ne9\)
a) Tính giá trị của A khi \(x=\dfrac{1}{4}\)
b) Rút gọn B.
c) Tìm giá trị nguyên của x để B nhận giá trị là số tự nhiên.
Tìm x để \(A=\dfrac{x-\sqrt{4}x+5}{\sqrt{x}-2}\) với x > 2 đạt giá trị nhỏ nhất
Tìm số nguyên x để giá trị của biểu thức \(B=\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}\) đạt giá trị nguyên