1.
Đặt biểu thức là $A$
Ta thấy:
$\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1$
Tương tự với các phân số còn lại và công theo vế thì:
$A=(\sqrt{2}-1)+(\sqrt{3}-\sqrt{2})+...+(\sqrt{2019}-\sqrt{2018})$
$=\sqrt{2019}-1$
2.
$\sqrt{8-2\sqrt{15}}=\sqrt{5-2\sqrt{5.3}+3}+\sqrt{3-2\sqrt{3.1}+1}$
$=\sqrt{(\sqrt{5}-\sqrt{3})^2}+\sqrt{(\sqrt{3}-1)^2}$
$=|\sqrt{5}-\sqrt{3}|+|\sqrt{3}-1|$
$=\sqrt{5}-\sqrt{3}+\sqrt{3}-1=\sqrt{5}-1$