\(A=\dfrac{x^2+y^2-xy}{x^2-y^2}:\dfrac{x^3+y^3}{x^2+y^2-2xy}\)
\(=\dfrac{x^2+y^2-xy}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\left(x-y\right)^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}\)
\(=\dfrac{x-y}{\left(x+y\right)\left(x+y\right)}=\dfrac{x-y}{\left(x+y\right)^2}\)