\(A^3=9+4\sqrt{5}+9-4\sqrt{5}+3\cdot A\)
=>A^3-3A-18=0
=>A=3
\(A^3=9+4\sqrt{5}+9-4\sqrt{5}+3\cdot A\)
=>A^3-3A-18=0
=>A=3
Thực hiện phép tính
\(A=\sqrt[3]{2\sqrt{5}}\left(\sqrt[6]{9+4\sqrt{5}}+\sqrt[3]{2+\sqrt{5}}\right)\)
Thực hiện phép tính
a)\(\dfrac{\sqrt[3]{135}}{\sqrt[3]{5}}-\sqrt[3]{54}.\sqrt[3]{4}\)
b)\(\left(\sqrt[3]{25}-\sqrt[3]{10}+\sqrt[3]{4}\right)\)\(\left(\sqrt[3]{5}+\sqrt[3]{2}\right)\)
thực hiện phép tính sau
\(\dfrac{1}{\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}}-\dfrac{\sqrt[3]{3}+\sqrt[3]{2}}{5}\)
Thực hiện các phép tính sau:
a)\(\sqrt[3]{\left(4-2\sqrt[3]{3}\right)\left(\sqrt[3]{3}-1\right)}\)
b)\(\sqrt{3+\sqrt{3}+\sqrt[3]{10+6\sqrt{3}}}\)
Thực hiện các phép tính sau :
a)A=\(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\) b)B=\(\left(2-\sqrt{3}\right).\sqrt[3]{26+15\sqrt{3}}\) c)C=\(\sqrt[3]{3+\sqrt{9+\dfrac{125}{27}}}-\sqrt[3]{-3+\sqrt{9+\dfrac{125}{7}}}\)
1.Chứng minh:\(\dfrac{a+\sqrt{2+\sqrt{5}.}\sqrt{\sqrt{9-4\sqrt{5}}}}{3\sqrt{2-\sqrt{5}}.\sqrt[3]{\sqrt{9+4\sqrt{5}-}3\sqrt{a^2}+\sqrt[3]{a}}}\)=\(-\sqrt[3]{a}-1\)
2.Rút gọn: \(\left(\dfrac{a^3\sqrt[]{a}-2a^3\sqrt{b}+\sqrt[3]{a^2}-\sqrt[3]{b}}{\sqrt[3]{a^2-\sqrt[3]{ab}}}+\dfrac{\sqrt[3]{a^2b}-\sqrt[3]{ab^2}}{\sqrt[3]{a}-\sqrt[3]{b}}\right)1\dfrac{1}{\sqrt[3]{a^2}}\)
Tính P\(=\left(x^3+12x-9\right)^{2021}\) khi \(x=\sqrt[3]{4\left(\sqrt{5}+1\right)}-\sqrt[3]{4\left(\sqrt{5}-1\right)}\)
thực hiện phép tính
a)\(\left(\frac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\frac{1}{3}}\right):2\sqrt[3]{\frac{1}{3}}\)
b)\(\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\)
thực hiện phép tính
a)\(\left(\frac{1}{2}\sqrt[3]{9}-2\sqrt[3]{3}+3\sqrt[3]{\frac{1}{3}}\right):2\sqrt[3]{\frac{1}{3}}\)
b)\(\left(\sqrt[3]{9}+\sqrt[3]{6}-\sqrt[3]{4}\right)\left(\sqrt[3]{3}+\sqrt[3]{2}\right)\)