e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)
a) = \(\dfrac{3\left(x^2-y^2\right)}{5xy}\) . \(\dfrac{15x^2y}{-2\left(x-y\right)}\)
= \(\dfrac{3\left(x-y\right)\left(x+y\right)}{1}\) . \(\dfrac{3x}{-2\left(x-y\right)}\)
= \(\dfrac{3\left(x+y\right)}{1}\) . \(\dfrac{3x}{-2}\) = \(\dfrac{-9x\left(x+y\right)}{2}\)