a) \(A=\left(\dfrac{1}{2^3}.3.\dfrac{13}{3}\right)\left(a^{3+2+1}\right)\left(x^{1+3}\right)\left(y^{1+2}\right)=\dfrac{13}{8}.a^6.x^4.y^3\)
\(B=\left[2^k.\left(-\dfrac{1}{2}\right)^2\right]\left(x^{2k+2}\right)\left(y^{3k+2.2}\right)\left(z^{4k+}\right)=2^{k-2}.x^{2\left(k+1\right)}.y^{3k+4}.z^{4k}\)
c, Ta có: \(\left(\dfrac{7}{3}x^2y^3\right)^{10}\left(\dfrac{3}{7}x^5y^4\right)^{10}\)
=\(\left(\dfrac{7}{3}\right)^{10}x^{20}y^{30}\left(\dfrac{3}{7}\right)^{10}x^{50}y^{40}\)
=\(\left(\dfrac{7}{3}\right)^{10}\left(\dfrac{3}{7}\right)^{10}x^{70}y^{70}\)
=\(1x^{70}y^{70}\)
=\(x^{70}y^{70}\)