\(\text{Gía trị lớn nhất của hàm số: }y=2\sqrt{1+x}+\sqrt{3-x}-\sqrt{-x^2+2x+3}\text{đạt tại }x_0=?\)
GIá trị lớn nhất của hàm số:
\(P=\sqrt[4]{1-x^2}+\sqrt[4]{1-x}+\sqrt[4]{1+x}\)
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau :
a) \(y=\dfrac{x}{4+x^2}\) trên khoảng \(\left(-\infty;+\infty\right)\)
b) \(y=\dfrac{1}{\cos x}\) trên khoảng \(\left(\dfrac{\pi}{x};\dfrac{3\pi}{2}\right)\)
c) \(y=\dfrac{1}{1+x^4}\) trên khoảng \(\left(-\infty;+\infty\right)\)
d) \(y=\dfrac{1}{\sin x}\) trên khoảng \(\left(0;\pi\right)\)Tìm Max, Min của hàm số:
1) \(y=\dfrac{x+1+\sqrt{x-1}}{x+1+2\sqrt{x-1}}\)
2) \(y=\sin^{2016}x+\cos^{2016}x\)
3) \(y=2\cos x-\dfrac{4}{3}\cos^3x\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
4) \(y=\sin2x-\sqrt{2}x+1,x\in\left[0;\dfrac{\pi}{2}\right]\)
5) \(y=\dfrac{4-cos^2x}{\sqrt{sin^4x+1}},x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{3}\right]\)
Tìm GTLN cua hàm số y=\(\dfrac{x+\sqrt{1+9x^2}}{8x^2+1}\), x>0
Tìm giá trị LỚN nhất của hàm số:
\(y=\sqrt{sin2x}+\sqrt{cos2x}\text{trên }\left[\dfrac{\pi}{6};\dfrac{\pi}{4}\right]\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau :
a) \(f\left(x\right)=-3x^2+4x-8\) trên đoạn \(\left[0;1\right]\)
b) \(f\left(x\right)=x^3+3x^2-9x-7\) trên đoạn \(\left[-4;3\right]\)
c) \(f\left(x\right)=\sqrt{25-x^2}\) trên đoạn \(\left[-4;4\right]\)
d) \(f\left(x\right)=\left|x^2-3x+2\right|\) trên đoạn \(\left[-10;10\right]\)
e) \(f\left(x\right)=\dfrac{1}{\sin x}\) trên đoạn \(\left[\dfrac{\pi}{3};\dfrac{5\pi}{6}\right]\)
g) \(f\left(x\right)=2\sin x+\sin2x\) trên đoạn \(\left[0;\dfrac{3\pi}{2}\right]\)
Tìm tất cả giá trị \(m\) để giá trị lớn nhất của hàm số:
1/ \(y=\dfrac{2x+m}{x+1}\) trên \(\left[0;1\right]\) bằng 2.
2/ \(y=\left|x^3-3x^2+m\right|\) trên \(\left[0;3\right]\) bằng 5.
3/ \(y=\left|\dfrac{x^2+mx+m}{x+1}\right|\) trên \(\left[1;2\right]\) bằng 2.
4/ \(y=\left|\dfrac{1}{4}x^4-\dfrac{19}{2}x^2+30x+m-20\right|\) trên \(\left[0;2\right]\) không vượt quá 20.