Giải phương trình: \(2x+\frac{x-1}{x}=\sqrt{1-\frac{1}{x}}+3\sqrt{x-\frac{1}{x}}\left(x>0\right)\)
giai pt : \(\sqrt{1-cosx}=sinx,x\in\left[\pi;3\pi\right]\)
Giải phương trình :
\(\cos2x+2\sin x=1+\sqrt{3}\sin2x\)
Tính: \(I=\lim\limits_{x\rightarrow1}\left(\dfrac{n}{1-x^n}-\dfrac{m}{1-x^m}\right)\) với m,n là các số nguyên.
a,4^x.5^(-x^2)-1=0
b,5.6^x/2 - 4.3^x + 9.2^x=0
c,3.8^x + 4.12^x = 18^x + 2.27^x
Giải phương trình trên .Cho x,y,z là các số thực dương thỏa mãn đẳng thức x^2 + y^2 + z^2 + 2xyz = 1. Khi đó giá trị lớn nhất của biểu thức 2x + y + z bằng bao nhiêu?
Bài 1: Chứng minh rằng với mọi n thuộc N*, ta có:
1.2+2.5+3.8+…..n(3n-1) = n^2(n+1)
CMR: [ ( 1+ 2 + 3 +...+ n ) - 7 ] không chia hết cho 10
Bài 1: Chứng minh rằng với mọi n thuộc N*, ta có:
11^n+1+122^n-1 chia hết cho 133
Bài 2: Cho tập A={2;5}. Từ A lập được bao nhiêu số có 10 chữ số sao cho không có hai chữ số 2 nào đứng cạnh nhau.