Tìm tất cả các giá trị của m để phương trình \(x^2-5x+1=m-2\sqrt{6+5x-x^2}\) có đúng 2 nghiệm phân biệt :
\(A,\left[{}\begin{matrix}\dfrac{7}{4}< m< 7\\m=8\end{matrix}\right.\)
\(B,\left[{}\begin{matrix}\dfrac{3}{4}< m< 6\\m=7\end{matrix}\right.\)
\(C,\left[{}\begin{matrix}\dfrac{7}{4}\le m\le7\\m=8\end{matrix}\right.\)
\(D,m=8\)
tìm giá trị m để bất phương trình sau có nghiệm đúng với mọi x. (m-2)x^2+2mx-2-m<0
có bao nhiêu giá trị nguyên âm của tham số m để hàm số y=\(\sqrt{x^2-2mx-2m+3}\) có tập xác định là R
Tìm tất cả các giá trị thực của tham số m để phương trình \(\left(m+3\right)x-2\sqrt{x^2-1}+m-3=0\) có nghiệm x\(\ge1\)
Cho phương trình \(x^4-mx^2+m+3=0.\) Giá trị của m để phương trình có 4 nghiệm phân biệt và tổng của hai nghiệm nhỏ nhất là một số nhỏ hơn -3 là:
A,\(6< m\le9\)
\(B,m>6\)
\(C,6< m\le11+\sqrt{42}\)
\(D,11-\sqrt{42}< m\le11+\sqrt{42}\)
GIẢI CÁC BẤT PHƯƠNG TRÌNH SAU:
a.\(2x^2+\sqrt{x^2-5x-6}>10x+15\)
b.\(\left(x+4\right).\left(x+1\right)-3\sqrt{x^2+5x+2}< 6\)
c.\(|x^2-3|+2x+1>=0\)
d.\(x^2+2.\left|x-3\right|-10< =0\)
e.\(\left|x^2-2x-8\right|>2x\)
MỌI NGƯỜI GIÚP MÌNH VỚI MÌNH CẢM ƠN
Mọi người giúp em giải bài này ạ, em cảm ơn
Bài 1: Rút gọn biểu thức:
A=\(\frac{\sin2x+\sin x}{1+\cos2x+\cos x}\)
B=\(cota\left(\frac{1+\sin^2a}{\cos a}-cosa\right)\)
C=\(\frac{1+\cos x+\cos2x+\cos3x}{2\cos^2x+\cos x-1}\)
D=\(\frac{2\cos\left(\frac{\pi}{2}-x\right)\cdot\sin\left(\frac{\pi}{2}+x\right)\cdot\tan\left(\pi-x\right)}{\cot\left(\frac{\pi}{2}+x\right)\cdot\sin\left(\pi-x\right)}-2\cos x\)
E=\(\cos^2x\cdot\cot^2x+3\cos^2x-\cot^2x+2\sin^2x\)
\(F=\frac{\sin^2x+\sin^2x\tan^2x}{\cos^2x+\cos^2x\tan^2x}\)
\(G=\frac{1+cos2a-cosa}{2sina-sina}\)
H=\(sin^{^{ }4}\left(\frac{\pi}{2}+\alpha\right)-cos^4\left(\frac{3\pi}{2}-\alpha\right)+1\)
Bài 2: chứng minh
a) cho \(\Delta ABCchứngminhsin\frac{A+B}{2}=cos\frac{C}{2}\)
b) chứng minh biểu thức sau độc lập với biến x:
A=\(cosx+cos\left(x+\frac{2\pi}{3}\right)+cos\left(x+\frac{4\pi}{3}\right)\)
c)cho \(\Delta\) ABC chứng minh : sin A+sin B+ sin C= \(4cos\frac{A}{2}cos\frac{B}{2}cos\frac{C}{2}\)
d)CMR: \(\frac{cos2a}{1+sin2a}=\frac{cosa-sina}{cosa+sina}\)
e) CMR:\(E=\frac{sin\alpha+cos\alpha}{cos^3\alpha}=1+tan\alpha+tan^2\alpha+tan^3\alpha\)
f) CMR \(\Delta\)ABC cân khi và chỉ khi \(sinB=2cosAsinC\)
g) CM: \(\frac{1-cosx+cos2x}{sin2x-sinx}=cotx\)
h)CM: \(\left(cos3x-cosx\right)^2+\left(sin3x-sinx\right)^2=4sin^2x\)
k) CMR trong tam giac ABC ta có: \(sin2A+sin2B+sin2C=4sinA\cdot sinB\cdot sinC\)
Bài 3: giải bất phương trình:
a)\(\frac{\left(1-3x\right)\left(2x^2+1\right)}{-2x^2-3x+5}>0\)
b)\(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}\ge0\)
c)\(\frac{\left(3x-2\right)\left(x^2-9\right)}{x^2-4x+4}\le0\)
d)\(\frac{\left(2x^2+3x\right)\left(3-2x\right)}{1-x^2}\ge0\)
e)\(\frac{\left(x^2+2x+1\right)\left(x-1\right)}{3-x^2}\)
f)\(\frac{2x+1}{-x^2+x+6}\ge0\)
mn giup e mấy câu này vs T_T
1. sin(\(\frac{\pi}{3}\)-x), biết cosx= \(-\frac{12}{13}\) (\(\frac{\pi}{2}< \frac{x}{2}< \frac{3\pi}{4}\))
2.cot\(\left(x-\frac{\pi}{4}\right)\), biết \(sinx=\frac{-4}{5}\left(\pi< x< \frac{3\pi}{2}\right)\)
3.tan\(\left(x+\frac{\pi}{4}\right)\), biết \(cot\left(\frac{5\pi}{2}-x\right)=2\)
Đường thẳng d : x+2y-4=0 cắt đường tròn (C) : \(\left(x-2\right)^2+\left(y-1\right)^2=5\) theo dây cung có độ dài bằng ?