Cho \(\Delta ABC\) có M là một điểm nằm trong tam giác. Qua M kẻ các đường thẳng AM, BM, CM lần lượt cắt BC,CA,AB lần lượt tại P,Q,R.
a) Chứng minh \(AM.BC+BM.CA+CM.AB\ge4S_{ABC}\)
b) Tìm vị trí của M để \(S_{PQR}\) đạt GTLN
Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC tại H, biết BH = 3,6 ; CH = 6,4.
a) Hãy tính độ dài các đoạn thẳng AH,AB và tính số đo góc HCK.
b) Gọi M và N lần lượt là hình chiếu của H lên AB và AC.Chứng minh tam giác AMN đồng dạng với tam giác ACB.
c) Tính diện tích tứ giác BMNC.
mn giúp em vs ạ mai em nộp gấp !!
Cho tam giác ABC nhọn , đường cao CK , trực tâm H . M là 1 điểm trên CK sao cho góc AMB = 90 độ . Gọi S, S1, S2 theo thứ tự lần lượt là diện tích của tam giác AMB; ABC; ABH . Cmr: S = \(\sqrt{S1.S2}\)
Cho tam giác ABC nhọn , đường cao CK , trực tâm H . M là 1 điểm trên CK sao cho góc AMB = 90 độ . Gọi S, S1, S2 theo thứ tự lần lượt là diện tích của tam giác AMB; ABC; ABH . Cmr: S = căn S1.S2
Cho tam giác ABC vuông tại A có AH là dường cao. Gọi I,K lần lượt là hình chiếu của H lên AB và AC. Biết BC= 10 cm; AH = 4 cm
CMR a AH=IK
b AB.AI= AK. AC
Cho tam giác ABC vuông tại A có AC>AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
1) Chứng minh AD.AB = AE.AC và tam giác ADE đồng dạng với tam giác ACB.
2) Cho biết BH = 2cm, CH = 4,5cm. Tính:
a) Độ dài đoạn thẳng DE.
b) Số đo của góc ABC.
c) Diện tích tam giác ADE.
Cho tam giác ABC vuông tại A , đường cao AH . Gọi M,N lần lượt là hình chiếu của H lên AB, AC . Chứng minh rằng :
a) AM.AB=AN.AC
b) MB/NC=(AB/AC)^3
c) BC.MB.NC=AH^3
Mọi người ơi, cho em hỏi bài này với ạ, cho tam giác ABC với đường tròn nội tiếp tâm I, kẻ ID, IE, IF lần lượt vuông góc với BC, AC, AB, gọi M, N, P, Q lần lượt là trung điểm BD, CD, CE, BF, MQ cắt NP tại T, chứng minh TB = TC. Em cảm ơn ạ
Cho tam giác ABC vuông tại A , AH là đường cao , góc ABC =60° . GỌI M LÀ TRUNG ĐIỂM CỦA AB , N LÀ TRUNG ĐIỂM CỦA AC . Lấy D đối xứng với H qua M và E đối xứng với H qua N. a, Chứng minh AH^2=AD. AE b, tia phân giác của góc ABC cắt AC tại K. Cm: sin góc ABC= 2sin góc ABK × cos CBK