bài 8/77
cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ,các đường cao AI < BK của tam giác ABC cắt nhau tại H ( I thuộc BC , K thuộc AC ) .AI vad BK cắt đường tròn O lần lượt tại D và E
A/chứng minh tứ giác ABIK nội tiếp
B/ gọi M là trung điểm của DE . chứng minh 3 điểm O,M,C thẳng hàng
C/chứng mình IK song song ED
thankkkkk
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn đường O các đường cao BF và CK của tam giác cắt nhau tại H . Tia FK cắt tia CB tại M , AH cắt BC và đường tròn O lần lượt tại D và E
A/chứng minh tứ giác BKFC nội tiếp và MKMF =MBMC ( khúc này tui k hiểu đề nói j , có sai đề thì nhắc mình nha :3333)
B/ AM cắt đường tròn O tại N (N khác A) . chứng minh góc AKN = góc AFN
thank :3333333333333
Cho tam giác ABC(AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC. Chứng minh EFDO là tứ giác nội tiếp.
Cho tam giác ABC nhọn nội tiếp đường tròn ( O ), Đường cao AD, BE,CF cắt nhau tại H .AH ,BH, CH kéo dài cắt đường tròn tâm O lần lượt tại Q,P,R. M là trung điểm của BC, I là trung điểm của AH , EF cắt AH tại K . Chứng minh :
a, Chứng minhTứ giác BFHD , CEHD , BFEC nội tiếp
b, Kẻ đường kinh AN , G là trọng tâm . Chứng minh H,G,O thẳng hàng
c, Chứng minh P,Q,R đối xứng với H qua AC,BC,AB
d, Chứng minh OA vuông góc với EF và tam giác ARQ cân
e, EF cắt đường tròn tại E1 và F1. Chứng minh AE1 , AF1 là tiếp tuyến của đường tròn ngoại tiếp tam giác CEE1 và tam giác BFF1
f, Chứng minh K là trực tâm của tam giác IBC
h,Chứng minh ME và MF là tiếp tuyến của đường tròn ngoại tiếp tam giác AEF
Cho ∆ABC nhọn có AB < AC. Vẽ đường tròn tâm O đường kính BC cắt các cạnh AB, AC lần lượt tại E và D . Gọi H là giao điểm BD và CE; AH cắt BC tại I.
a) Chứng minh AI vuông góc với BC
b) Vẽ AM, AN tiếp xúc (O) tại M và N. Chứng minh IA là tia phân giác góc \(\widehat{MIN}\)
c) Chứng minh ba điểm M, H , N thẳng hàng.
cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Hạ các đường cao AH, BK của tam giác. Các tia AH, BK lần lượt cắt (O) tại các điểm thứ hai là D,E
a, CM tứ giác ABHK nột tiếp đường tròn. Xác định tâm dduongf tròn đó
b, CM HK// DE
c, Cho (O) và dây AB cố định,điểm C di chuyển trên (O) sao cho tam giác ABC có ba góc nhọn.Chứng minh rằng độ dài bán kính đường tròn ngoại tiếp tam giác CHK không đổi
Giups mình với.thanks ❤
Cho tam giác ABC (AB<AC) nội tiếp đường tròn (O), các đường cao BD và CE cắt nhau tại H. Gọi F và K lần lượt là giao điểm của AH với BC, DE
a) Chứng minh: Tứ giác ADHE nội tiếp đường tròn và xác định tâm I của đường tròn.
b) Chứng minh: DB là phân giác của góc EDF và \(\dfrac{KH}{HF}=\dfrac{DK}{DF}\)
c) Đường thẳng CE cắt đường tròn tại điểm thứ hai N, NF cắt đường tròn tại điểm thứ hai P, gọi Q là trung điểm của DF. Chứng minh A, P, Q thẳng hàng
Tam giác ABC nội tiếp đường tròn (T) có tâm O có AB =AC và góc BAC > 90 độ. Gọi M là trung điểm AC, tia MO cắt (T) tại D, BC lần lượt cắt AO và AD tại N và P.
a) Phân giác góc BDP cắt BC tại E, ME cắt AB tại F. Chứng minh CA =CP và ME vuông góc với DB
b ) Chứng minh tam giác MNE cân, tính tỉ số DE/DF