Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AC^2+AB^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=26^2-24^2=100\)
hay AC=10(cm)
Áp dụng định lí Pytago vào ΔIMN vuông tại I, ta được:
\(IN^2+IM^2=MN^2\)
\(\Leftrightarrow IM^2=MN^2-IN^2=65^2-25^2=3600\)
hay IM=60(cm)
Ta có: \(\dfrac{AC}{IN}=\dfrac{10}{25}=\dfrac{2}{5}\)
\(\dfrac{AB}{IM}=\dfrac{24}{60}=\dfrac{2}{5}\)
\(\dfrac{BC}{MN}=\dfrac{26}{65}=\dfrac{2}{5}\)
Do đó: \(\dfrac{AC}{IN}=\dfrac{AB}{IM}=\dfrac{BC}{MN}\)
Xét ΔABC và ΔIMN có
\(\dfrac{AC}{IN}=\dfrac{AB}{IM}=\dfrac{BC}{MN}\)(cmt)
Do đó: ΔABC\(\sim\)ΔIMN(c-c-c)