\(AE\cdot AB=AH^2\)
nên \(\dfrac{AE\cdot AB}{AB^2}=\dfrac{AH^2}{AB^2}\)
\(\Leftrightarrow\dfrac{AE}{AB}=\dfrac{AH^2}{AB^2}\)
\(AF\cdot AC=AH^2\)
\(\Leftrightarrow\dfrac{AF\cdot AC}{AC^2}=\dfrac{AH^2}{AC^2}\)
hay \(\dfrac{AF}{AC}=\dfrac{AH^2}{AC^2}\)
\(\dfrac{AE}{AB}+\dfrac{AF}{AC}=AH^2\left(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\right)=AH^2\cdot\dfrac{BC^2}{AB^2\cdot AC^2}\)
\(=AH^2\cdot\dfrac{BC^2}{\left(AB\cdot AC\right)^2}=AH^2\cdot\dfrac{BC^2}{\left(AH\cdot BC\right)^2}=1\)