1: Xét ΔAFH vuông tại F và ΔADB vuông tại D có
\(\widehat{FAH}\) chung
Do đó: ΔAFH~ΔADB
=>\(\dfrac{AF}{AD}=\dfrac{AH}{AB}\)
=>\(AF\cdot AB=AD\cdot AH\)
2: Ta có: \(\dfrac{AF}{AD}=\dfrac{AH}{AB}\)
=>\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)
Xét ΔAFD và ΔAHB có
\(\dfrac{AF}{AH}=\dfrac{AD}{AB}\)
\(\widehat{FAD}\) chung
Do đó: ΔAFD~ΔAHB
3: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔADC
=>\(\dfrac{AE}{AD}=\dfrac{AH}{AC}\)
=>\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)
Xét ΔAED và ΔAHC có
\(\dfrac{AE}{AH}=\dfrac{AD}{AC}\)
\(\widehat{EAD}\) chung
Do đó: ΔAED~ΔAHC
=>\(\widehat{ADE}=\widehat{ACH}\)
Ta có: \(\widehat{ACH}+\widehat{BAC}=90^0\)(ΔFAC vuông tại F)
\(\widehat{ABH}+\widehat{BAC}=90^0\)(ΔABE vuông tại E)
Do đó: \(\widehat{ACH}=\widehat{ABH}\)